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ABSTRACT 

Methods for the calculation of the enthalpy of mixing from isothermal as well 
as isobaric vapor-liquid equilibria are derived. They make possible a useful estimation 
of the enthalpy of mixing from a few data, even if the direct differentiation of the 
free excess enthalpy or vapor pressures does not succeed. They also make possible 
the calculation of the enthalpy of mixing somewhat outside the temperature range 
for which measurements of phase equilibria are available_ The calculus has been 
carried out for the systems ammonia/water and benzenelrz-heptane. 

INTRODUCTION 

There are two possible methods of calculating the enthalpy of mixing of the 
liquid phase from vapor-liquid equilibrium data. In both cases, the thermodynamic 
conditions for the phase equilibrium are used. The vapor-liquid equilibrium of an 
m-component system is defined by the following relations 

T’ = T’ = T (1) 

pv = pl = p (2) 

& = pf (i = 1, _.., m) (3) 

The first method makes use of the equilibrium conditions for the calculation 
of the chemical excess potentials p; of the liquid phase. The enthalpy of mixing is 
then calculable from the temperature dependence of the free excess enthaipy 

a GE 

HE = _ T2 (4 & P*x3 (4) 

In the second method, the equilibrium conditions are used to derive the differen- 
tial equations for co-existing phases. These equations show the- enthalpy of mixing 

* This paper was written at: Institut fiir Thermo- und Fluiddynamik, Ruhr-Universitiit Bochum, 
D-4630 Bochum (B-R-D.). 
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is also calculable directly from the temperature dependence of the vapor pressures. 

FIRST hlETHOD 

The definition of a thermodynamic excess function implies the definition of the 
ideal solution, which becomes problematic for regions of state near the phase equilib- 
rium. For the purpose of full diKerentiability of the excess functions in the whole 

region of a phase, the ideal solution for a liquid phase (T, p, xi) is defined in the 
following manner. The ideal solution is composed of the pure components being 
liquid at temperature T and pressure p_ Under these conditions, the liquid state of a 

pure component may be only fictitious, then it corresponds to a point on the isotherm, 
T, extrapolated into the two-phase region. The ideal solution for the vapor phase is 
defined in a corresponding manner. The equilibrium conditions then yield the chemical 
excess potential of the component i in the liquid phase at phase equilibrium 

(5) 
p=o Pi0 

The excess volume of the vapor phase pE is rarely known as a function of 
temperature, pressure, and composition. Therefore, the real behavior of the vapor 
phase has to be approached by the model of the ideal solution of gases, whereby the 
first integral of eqn. (5) vanishes. But eqn. (5) can usually be reduced further by use 
of the ideal gas law for the pure components and by neglecting the molar volume 
vj of the liquid with respect to the molar volume r: of the vapor. Then eqn. (5) 
yields the well-known relation for the activity coefficient 

J’i P yi _ 
-yi Pi0 

(6) 

Carrying out the differentiation according to eqn. (4), the pressure need no 
be held constant, because it influences only slightly the caloric variables of state 
of liquids. Thus the partial molar enthalpy of mixin g in the liquid phase follows by 
differentiating the activity coeficient given by eqn. (6) 

1,; = - RT’ = - 
x_i x_l 

(7) 

SECOND METHOD 

For a change of the equilibrium state, defined by eqns. (l-3), we have the 
necessary conditions 

dT’ = dT’ = dT (8) 

dp” = dp’ = dp (9) 

d/c; = d/c: (i = 1, _.., 171) (10) 
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Condition (10) is satisfied for each component i_ Consequently, the following 

relations also hold. 

(W 

~ ?,id(~(r - darn) = 0 
i= 1 

(12) 

Denoting the differential chanse of a variable of state at constant temperature 
and constant pressure by 6, the total differential of the chemical potential of any 
component i reads 

Dali = - sidT + Uidp + J/Ci (13) 

With this expression and with eqns. (8 and 9), eqns. (1 I and 12) yield 

111 n* 

- C s~(s~ - s~)dT + C Si(Vy - vf,)dp + ~ Si Sony - off) = 0 
i= 1 i= 1 i= 1 

- i% yi(s; - s;)dT + 5 _Y~(zJ: - u’,)dp i 5 .\‘i <5(/f; - 11:) = 0 (15) 
i= I i= 1 

With 

jli = hi - TSi 

the equilibrium conditions (1 and 3) yield the relation 

(16) 

(17) 

Furthermore, the Gibbs-Duhem equation holds for both phases 

~ Xi6~: = 0 (18) 
i=l 

~ J:iGjfr = 0 
i=1 

(1% 

With the last three equations, reIations (14) and (15) can be transformed to 

- izl Xi(ZIY - ZZ:) $ f f$ Xi(Z;r - vi)dp f 5 Xidj(r = 0 
i=l i=l 

i= 1 
+ 5 Fi(Ur - u:)dp - ~ l?i6jf: = 0 

i=l i=l 
(21) 

These equations are the differential equations for co-existing phases for a 
multicomponent system in the most simple and general form. For the first time, they 
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have been derived in another form by Storonkin’. They correspond to the Clausius- 
Clapeyron equation for pure substances. 

The meaning of the coefficient of dp in eqn. (20) is the negative volume change 
of a system in phase equilibrium if one mole of vapor condenses into such an amount 
of hquid that thereby the composition of the liquid does not noticeably change. The 
coefficient of dT/T corresponds to the similar change of enthalpy. On the other hand, 
the coefficient of dp in eqn. (21) means the volume change of a system if one mole of 
liquid evaporates into a large vapor phase and, similarly, the coefficient of dT/T 
holds for the negative enthalpy change. In the following, we treat only eqn. (20) for 
condensation. 

By definition, the differential S& is not zero only if the composition changes. 
Keeping the composition of the vapor phase constant, changes of the phase equilib- 
rium are given by 

ZP ( > 
1 _z Xi(hT - /lf,) 

r-1 aT ~, = r ~--~- --- 

2 Xj,(Ur - u3 
(22) 

i= 1 

For the application of eqn. (22), the same definition of the ideal solution and 
the same simplifications are used as for the first method. Then, for the partial molar 
enthalpy in the liquid phase it follows 

Jr: = Bf: + h:E (23) 

According to the model of the ideal solution of gases for the vapor phase it 
follows 

/I; r R; (24) 

Introducing the enthalpy of vaporization, Rr, of the pure components 

H;(T) N Hr - a; (25) 

the last three equations yield for the numerator in eqn. (22) 

in Xi(~Zy - rl3 1: ~ XiRV - ~ XitZtE = ~ _Ui~~ - RE 
i=l i=l i=l 

According to the mode1 of the idea1 solution of gases for the vapor phase, it 
follows 

v;= 7; - 

Thus the denominator in eqn. (22) reads 

2 Xi($ - V:) = ~ Xi~~ - j7*- gxippL p 

i=1 i= 1 i=l 

(27) 

(28) 
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with riv denoting the volume of vaporization. Using the ideal gas law for the vapor 
phase, this equation is reduced to 

5 Xi(Vr - vf) = - - RT v~ 

i=l P 
(29) 

Neglecting also the molar volume of the liquid phase in comparison with that of 
the vapor phase, eqn. (22) yieids, in connection with eqns. (26 and 29), for the enthalpy 
of mixing in the liquid phase 

H -E = 5 x,g; - RT2 
i= I YJ 

(30) 

THEORETICAL INTERRELATION BETWEEN BOTH METHODS 

Applying the same simplifications as used for the derivation of eqns. (7 and 30) 
to the Clausius-CIapeyron equation, we have 

dlnpio _ Z __- 
dT RX!-’ 

So, from eqn. (7) 

BE = RT2 
XJ 

Equation (30) can be rewritten by using eqn. (31) 

-E 
H = RT2 

d III pi0 
Xi dT - W,,,] 

Comparison of eqns. (32 and 33) yields 

(s)y, = (q)x, + j.. xi (s)xj 

(31) 

(32) 

(33) 

This relation between the different vapor pressure curves of mixtures holds 
for the same assumptions as needed for eqns. (7 and 30). 

Equations (32 and 33) show that, for the calculation of enthalpies of mixing, 
compIete measurements of phase equilibria are needed because all variables 7’, p, 

xi and yi must be known. The differentiations according to eqns. (32 and 33) have 
to be done for constant composition of the liquid or vapor phase. But usually phase 
equilibria are measured at constant temperature or pressure. Therefore the experi- 
mental data have to be interpolated graphically or numerically. If the evaluation of 
the results does not satisfy, the reason for that has to be seen more often in the in- 
sufficient thermodynamic consistency of the data than in the assumptions of eqns. 
(32 and 33). Because in both methods the enthalpy of mixing rest&s as a difference 
of several differential quotients, they have to be calculated with high precision. 
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APPLICATION TO BINARY SYSTEhIS 

For HI = 2, let X-, = s and yr = y, then eqn. (34) reads 

Application of the differentiation rule 

yields the well-known relation 

2 In p 

i > 

Y-X -- = 
6-r -j- ?_(I - ?_) 

(35) 

(36) 

(37) 

In the special case of binary systems, the isothermal data of the boiling point 
curve suffice for the calculation of the enthalpy of mixing because eqn. (37) enables 
the calculation of the isothermal dew-point curve from boiling data provided the 
assumptions of eqn. (37) are fulfilled. 

In many cases, measurements of phase equilibria are available only for two or 
three isotherms or isobars. Then, the evaluation of the enthalpy of mixing according 
to eqns. (32) or (33) mostly fails. But further manipulation of these equations can 
provide a satisfyin g evaluation of the enthalpy of mixing. Introducing the partial 
pressure 

Pi = YiP 

eqn. (32) reads, for a binary system 

WE = - RT’ 

For a binary system, eqn. (33) yields 

(39) 

HE = RT” (40) 

Applying the chain rule of differential calculus with respect to eqn. (31), both 
equations can be transformed to 

[ RE = - R; (1 - s) (y;+J + x (“,l;g)J (41) 

and 
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The new relations (41) and (42) have the advantage that the differential quotients 
are now almost independent of temperature. This has been shown by 0thmer2-4 (see 
also Figs. l-6). After interpolatin, 0 the equilibrium data for certain compositions, the 
differential quotients of eqns. (41) or (42) can be calculated simply by linear regression 
with any pocket calculator. 

Accurate measurements of enthalpies of vaporization for the pure substances 
are rare, therefore calculation from vapor pressure equations according to eqn. (3 I) is 

preferable. As a simple and accurate vapor pressure equation, the Antoine equation 
is serviceable 

log pi0 = Ai - Bi 

t -I- c; 
with 

Hy = RT2 _Bi In 10 ___~ 
‘ 

(t + Ci)’ 
(44) 

The constants of the Antoine equation have been caIculated for many substances 

by API (Project 44)‘. Another suitable vapor pressure equation with only three 
parameters reads 

log pi0 = - 
A- 

~ + Bi + Ci log T (45) 

with 

Rv = R(Ai in 10 + CiT) (46) 

The constants of these equations have also been calculated for many substances 

(see Landolt-B6rnstein6). 

CORRECTIONS FOR REAL GAS BEHAVIOR 

An approximation to the real behavior of the vapor phase can be obtained by 
applying the model of the ideal solution of gases; then we obtain the activity coefficient 
at phase equilibrium from eqn. (5), with restriction to the second virial coefficients 
and by neglect of the pressure dependence of the molar liquid volume in the range 
from pi0 to p, in the form 

yi = )‘i exp (Bi - C> (P - Pie) = Yi P i’i 
xi Pi0 RT xi Pi0 

(47) 

Then, eqn. (41) for the calculation of the enthalpy of mixing by the first method 

changes to 

HE = RT2 d l;;‘” (1 - x) [ 
(48) 
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For the second method 
phase. Then we obtain from 
equation 

R” p;() 

we also neglect the volume of mixing FE of the liquid 
eqns. (28, 26 and 22), using the Clausius-Ciapeyron 

(4% 

with 

v; = = + Bi _ vf 
Pi0 

In view of the uncertainty of the equilibrium data. corrections for real gas 
behavior are not necessary at moderate pressures. 

COMPARISON OF ROTH METHODS . . 

In the first method [eqn. (41)]. the assumption of temperature-independent 
differential quotients is problematic because then the temperature dependence of the 
enthalpy of mixin g would correspond to that of the enthalpy of vaporization of 
pure substances [Ry in eqn. (41)]. The expression in the bracket of eqn. (41) would 
be a function only of composition; therefore, all HE(s) curves at different tempera- 
tures would be similar. Thus, if the EE(_y) curves vary with temperature, the differential 
quotients of eqn. (41) cannot be independent of temperature. In any case, a graphical 
examination by a double logarithmic plot of the data is advisab!e. 

By the second method, accordin g to eqn. (42): only one differential quotient 
needs to be calculated. But in the case of extreme forms of the dew point curves, e.g. 
ammonia/water, the calculation of the enthalpy of mixing may be possible only for a 
part of the concentration range. Furthermore, the second method has the disadvantage 
that the equilibrium compositions of the two phases have to be known for that 
temperature, for which the enthalpy of mixing is to be calculated. If necessary, these 
compositions can be calculated for any temperature by interpolation or extrapolation 
from the equilibrium data. 

THE BENZENE/WHEPTANE SYSTEM 

The calculus is based on the isothermal equilibrium measurements of Werner 
and Schuberth7 at 2O”C, Harris and Dunlop’ at 25°C Palmer and Smith9 at 45”C, 
and Fu and Lu” at 75°C. Furthermore, the isobaric measurements of Sieg” in 
the range from 300 to 760 Torr have been used. The data, _graphically interpolated 
for certain compositions, are plotted in Figs. l-3 according to eqns. (41) and (42). 
Additionally, Figs. 1 and 2 show the isobaric measurements of HlouSek and Halar2. 
For reasons of the graphical representation, log p2/plo has been plotted instead 
of log pIplo in Fig. 3 for constant composition of the vapor phase. The slopes of the 
representative curves are the same. As the figures show, the differential quotients of 



TemDerohre 

Vapor pressure of n-Heptone (p,) 

Fig. 1. Lines of constant composition of the liquid phase in the logpl/plo vs. ~IU plot. 

Temperature 
50 60 70 80 90 100 ‘c 

Vapor pressure of n-Heptane (p,l 

Fig. 2. Lines of constant composition of the liquid phase in the log pz/p20 vs. ~10 plot. 
1 
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Temperature 

i--* , . . . 

Vopor pressure of n-Heptone i@ 

Fig. 3. Lines of constant composition of the vapor phase in the log ps/pl~ VS. plo plot. 

1000 
HE 
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60C 
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l- 

I- 

: 
-measured by Mtinsch 

I ---calculated from vapor pressures for x=const 

n - Hepfone 

0.2 0.8 xB 1 

Benzene 

Fig. 4. Comparison of measured and calculated enthalpy of mixin g of the benzene/rl-heptane system 
at 25;c. 



161 

0 
Temperature 

5 m 15 20 25 30 35 40 45 50 55 60 65 

Vapor pressure of Water @J 

Fig. 5. Lines of constant composition of the liquid phase in the log ~1/~1” vs. p10 plot. 

Temagrature 
0 5 10 15 20 25 30 35 40 4s 50 55 60 65 ‘C 

-I& 
I I 

PM I 
2.2, 

_i _ *____ -_.._ ’ Ammdnn/ Water __ _i-_, _f j 0 Scatchard 
I 

Vapor pressure of Water (pi01 

Fig. 6. Lines of constant composition of the liquid phase in the log p~/pzo vs. 17x0 plot. 
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Water Ammonia 

--calculated from vapor presstires for x=const 

-measured by her 

-measured by Baud/Gay (285 ~28610 

Fig. 7. Comparison of calculated and measured enthalpy of mixing of the ammonia/water system 
a& IO’C. 

eqns. (41) and (42) can be considered as independent of temperature. They have 
been calculated by linear regression. 

The temperature range of the equilibrium data reaches from 20 to 95°C. The 

enthalpy of mixing has been calculated for 25 “C and compared with the data measured 
by Miinsch’ 3. There is satisfactory agreement of calculated and measured data 
(Fig. 4). For the enthalpy of vaporization, the value of API-Project 445, according 
to eqn. (44), has been used for the calculus. 

THE AhIXIONIA/WATER SYSTEM 

The calculus for the ammonia/water system may be used as an example for 
strongIy non-ideal mixtures. The calculus is based on the isothermal equilibrium data 
of Scatchard et al.’ 4. The calculus has been carried out with the assumption of an 
ideal vapor phase, according to eqn. (41). Nevertheless the calculated enthalpies of 
mixing are in satisfactory agreement (Fi g. 7) to the measurements by Baud and Gay’ 5 
and Zinner’ 6_ Because of the extreme form of the dew point curves, the second method 

according to eqn. (42) allows the calculation of the enthalpy of mixing only in the 
range of _yA < 0.25; therefore it has not been carried out. 
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CONCLUSIONS 

In order to caiculate the enthalpy of  mixing according to eqn. (33), the vapor 
pressure curves of  the benzene/n-heptane system have been fitted by Antoine equations 
for constant compositions of  the vapor phase. Although the same data, as used for 
the calculus according to eqn. (42), are represented by the Antoine equations with 
a precision of 2 ;< 10 - 3  in the temperature range from 20 to 75°C and 10 -2  beyond 
that, the resulting HE(x) curve is so severely deformed that its representation in 
Fig. 4 has been omitted. 

Thus the manipulations leading to eqns. (41) and (42) reduce not only the 
process of  calculation, but also increase the accuracy of the results. The search for 
equations which describe the temperature dependence of activity coefficients or vapor 
pressures, then becomes tmnecessary. 

As a further example, a similar calculation has been carried out for the benzene/ 
1,2-dichloroethane systern elsewhere ~ z 

NOMENCLATURE 

B i second virial coeffÉcient of  pure component  i (m3). 
~E molar excess free enthalpy of mixing (J mole-1).  
~E molar excess enthalpy of mixing (J mole-  1). 
H i molar enthalpy of  pure component  i at system temperature (J mo le - i ) .  
H v molar enthalpy of vaporization of pure component  i at system temperature 

(J mole-  1). 
h~ partial molar enthalpy of  component  i (J mole - I ) .  
p total pressure (N m-2) .  
Pi  partial pressure of  component  i (N m-2) .  
Pi0 saturated vapor pressure of  pure component  i at system temperature (N m-2) .  
R gas constant (8.314 J mole -1 K). 
r~ real gas correction of activity coefficient ),;. 
s~ partial molar entropy of component  i (J mole -  l K -  ~). 
T temperature, absolute (K). 
V~ molar volume of pure component  i at system temperature (m 3 mole-1) .  
V~' molar volume of vaporization of pure component  i at system temperature (m a 

mole - l ) .  
v i partial molar volume of  component  i (m a m o l e - ' ) .  
,x-~ liquid phase mole fraction, component  i. 
y~ vapor phase mole fraction, component  i. 

G r e e k  l e t t e r s  

7i activity coefficient of  component  i at phase equilibrium. 
lti chemical potential of  component  i (J mo le - l ) .  
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Indices or subscripts 
E excess function (in the liquid phase, if not indicated additionally). 
V vaporization. 
1 liquid phase. 
V vapor phase. 

j at constant composition of a phase. 
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